Holographic Data Storage



Holographic data storage is a potential replacement technology in the area of high-capacity data storage currently dominated by magnetic and conventional optical data storage. Magnetic and optical data storage devices rely on individual bits being stored as distinct magnetic or optical changes on the surface of the recording medium. Holographic data storage overcomes this limitation by recording information throughout the volume of the medium and is capable of recording multiple images in the same area utilizing light at different angles.

Additionally, whereas magnetic and optical data storage records information a bit at a time in a linear fashion, holographic storage is capable of recording and reading millions of bits in parallel, enabling data transfer rates greater than those attained by optical storage.

Holographic data storage captures information using an optical inference pattern within a thick, photosensitive optical material. Light from a single laser beam is divided into two separate beams, a reference beam and an object or signal beam; a spatial light modulator is used to encode the object beam with the data for storage. An optical inference pattern results from the crossing of the beams’ paths, creating a chemical and/or physical change in the photosensitive medium; the resulting data is represented in an optical pattern of dark and light pixels. By adjusting the reference beam angle, wavelength, or media position, a multitude of holograms (theoretically, several thousand) can be stored on a single volume. The theoretical limits for the storage density of this technique are approximately tens of terabits (1 terabit = 1024 gigabits, 8 gigabits = 1 gigabyte) per cubic centimeter. In 2006, InPhase technologies published a white paper reporting an achievement of 500 Gb/in2.

For two-color holographic recording, the reference and signal beams are fixed to a particular wavelength (green, red or IR) and the sensitizing/gating beam is a separate, shorter wavelength (blue or UV). The sensitizing/gating beam is used to sensitize the material before and during the recording process, while the information is recorded in the crystal via the reference and signal beams. It is shone intermittently on the crystal during the recording process for measuring the diffracted beam intensity. Readout is achieved by illumination with the reference beam alone. Hence the readout beam with a longer wavelength would not be able to excite the recombined electrons from the deep trap centers during readout, as they need the sensitizing light with shorter wavelength to erase them.

Usually, for two-color holographic recording, two different dopants are required to promote trap centers, which belong to transition metal and rare earth elements and are sensitive to certain wavelengths. By using two dopants, more trap centers would be created in the Lithium niobate crystal. Namely a shallow and a deep trap would be created. The concept now is to use the sensitizing light to excite electrons from the deep trap farther from the valence band to the conduction band and then to recombine at the shallow traps nearer to the conduction band. The reference and signal beam would then be used to excite the electrons from the shallow traps back to the deep traps. The information would hence be stored in the deep traps. Reading would be done with the reference beam since the electrons can no longer be excited out of the deep traps by the long wavelength beam.

With its omnipresent computers, all connected via the Internet, the Information Age has led to an explosion of information available to users. The decreasing cost of storing data, and the increasing storage capacities of the same small device footprint, have been key enablers of this revolution. While current storage needs are being met, storage technologies must continue to improve in order to keep pace with the rapidly increasing demand.

However, both magnetic and conventional optical data storage technologies, where individual bits are stored as distinct magnetic or optical changes on the surface of a recording medium, are approaching physical limits beyond which individual bits may be too small or too difficult to store. Storing information throughout the volume of a medium—not just on its surface—offers an intriguing high-capacity alternative. Holographic data storage is a volumetric approach which, although conceived decades ago, has made recent progress toward practicality with the appearance of lower-cost enabling technologies, significant results from longstanding research efforts, and progress in holographic recording materials.

In addition to high storage density, holographic data storage promises fast access times, because the laser beams can be moved rapidly without inertia, unlike the actuators in disk drives. With the inherent parallelism of its pagewise storage and retrieval, a very large compound data rate can be reached by having a large number of relatively slow, and therefore low-cost, parallel channels.

Because of all of these advantages and capabilities, holographic storage has provided an intriguing alternative to conventional data storage techniques for three decades. However, it is the recent availability of relatively low-cost components, such as liquid crystal displays for SLMs and solid-state camera chips from video camcorders for detector arrays, which has led to the current interest in creating practical holographic storage devices. Recent reviews of holographic storage can be found. A team of scientists from the IBM Research Division have been involved in exploring holographic data storage, partially as a partner in the DARPA-initiated consortia on holographic data storage systems (HDSS) and on photorefractive information storage materials (PRISM). In this paper, we describe the current status of our effort.

The overall theme of our research is the evaluation of the engineering tradeoffs between the performance specifications of a practical system, as affected by the fundamental material, device, and optical physics. Desirable performance specifications include data fidelity as quantified by bit-error rate (BER), total system capacity, storage density, readout rate, and the lifetime of stored data. This paper begins by describing the hardware aspects of holographic storage, including the test platforms we have built to evaluate materials and systems tradeoffs experimentally, and the hardware innovations developed during this process. Phase-conjugate readout, which eases the demands on both hardware design and material quality, is experimentally demonstrated. The second section of the paper describes our work in coding and signal processing, including modulation codes, novel preprocessing techniques, the storage of more than one bit per pixel, and techniques for quantifying coding tradeoffs. Then we discuss associative retrieval, which introduces parallel search capabilities offered by no other storage technology. The fourth section describes our work in testing and evaluating materials, including permanent or write-once read-many-times (WORM) materials, read­write materials, and photon-gated storage materials offering reversible storage without sacrificing the lifetime of stored data. The paper concludes with a discussion of applications for holographic data storage.