The Atkinson cycle allows the intake, compression, power, and exhaust strokes of the four-stroke cycle to occur in a single turn of the crankshaft. Owing to the linkage, the expansion ratio is greater than the compression ratio, leading to greater efficiency than with engines using the alternative Otto cycle.
The Atkinson cycle may also refer to a four stroke engine in which the intake valve is held open longer than normal to allow a reverse flow of intake air into the intake manifold. This reduces the effective compression ratio and, when combined with an increased stroke and/or reduced combustion chamber volume, allows the expansion ratio to exceed the compression ratio while retaining a normal compression pressure. This is desirable for improved fuel economy because the compression ratio in a spark ignition engine is limited by the octane rating of the fuel used. A high expansion ratio delivers a longer power stroke, allowing more expansion of the combustion gases and reducing the amount of heat wasted in the exhaust. This makes for a more efficient engine.
The disadvantage of the four-stroke Atkinson cycle engine versus the more common Otto cycle engine is reduced power density. Because a smaller portion of the intake stroke is devoted to compressing the intake air, an Atkinson cycle engine does not intake as much air as would a similarly-designed and sized Otto cycle engine.
Four stroke engines of this type with this same type of intake valve motion but with forced induction (supercharging) are known as Miller cycle engines.
Multiple production vehicles use Atkinson cycle engines:
Toyota Prius hybrid electric (front-wheel-drive)
Ford Escape hybrid electric (front- and four-wheel drive)
In all of these vehicles, the lower power level of the Atkinson cycle engine is compensated for through the use of electric motors in a hybrid electric drive train. These electric motors can be used independent of, or in combination with, the Atkinson cycle engine.