Computer programs in GP can be written in a variety of programming languages. In the early (and traditional) implementations of GP, program instructions and data values were organized in tree-structures, thus favoring the use of languages that naturally embody such a structure (an important example pioneered by Koza is Lisp). Other forms of GP have been suggested and successfully implemented, such as the simpler linear representation which suits the more traditional imperative languages [see, for example, Banzhaf et al. (1998)]. The commercial GP software Discipulus, for example, uses linear genetic programming combined with machine code language to achieve better performance. Differently, the MicroGP uses an internal representation similar to linear genetic programming to generate programs that fully exploit the syntax of a given assembly language.
GP is very computationally intensive and so in the 1990s it was mainly used to solve relatively simple problems. However, more recently, thanks to various improvements in GP technology and to the well known exponential growth in CPU power, GP has started delivering a number of outstanding results. At the time of writing, nearly 40 human-competitive results have been gathered, in areas such as quantum computing, electronic design, game playing, sorting, searching and many more. These results include the replication or infringement of several post-year-2000 inventions, and the production of two patentable new inventions.
Developing a theory for GP has been very difficult and so in the 1990s genetic programming was considered a sort of pariah amongst the various techniques of search. However, after a series of breakthroughs in the early 2000s, the theory of GP has had a formidable and rapid development. So much so that it has been possible to build exact probabilistic models of GP (schema theories and Markov chain models) and to show that GP is more general than, and in fact includes, genetic algorithms.
Genetic Programming techniques have now been applied to evolvable hardware as well as computer programs.
Meta-Genetic Programming is the technique of evolving a genetic programming system using genetic programming itself. Critics have argued that it is theoretically impossible, but more research is needed.