Vacuum Braking System



The vacuum brake is a braking system used on trains. It was first introduced in the mid 1860s and a variant, the automatic vacuum brake system became almost universal in British train equipment, and in those countries influenced by British practice.

It enjoyed a brief period of adoption in the USA, primarily on narrow gauge railroads.

Its limitations caused it to be progressively superseded by compressed air systems, in the United Kingdom from the 1970's.

The vacuum brake system is now obsolescent; it is not in large-scale use anywhere in the world, supplanted in the main by air brakes.

In the earliest days of railways, trains were slowed or stopped by the application of manually applied brakes on the locomotive and in brake vehicles through the train, and later by steam power brakes on locomotives. This was clearly unsatisfactory, but the technology of the time did not easily offer an improvement. A chain braking system was developed, requiring a chain to be coupled throughout the train, but it was impossible to arrange equal braking effort down the length of the train.

A major advance was the adoption of a vacuum braking system in which flexible pipes were connected between all the vehicles of the train, and brakes on each vehicle could be controlled from the locomotive. The earliest pattern was a simple vacuum brake, in which vacuum was created by operation of a valve on the locomotive; the vacuum actuated brake pistons on each vehicle, and the degree of braking could be increased or decreased by the driver. Vacuum, rather than compressed air, was preferred because steam locomotives can be fitted with ejectors, which are simple venturi devices that create vacuum without the use of moving parts.

However the simple vacuum system had the major defect that in the event of one of the hoses connecting the vehicles becoming displaced (by the train accidentally dividing, or by careless coupling of the hoses, or otherwise) the vacuum brake on the entire train was useless.

The automatic vacuum brake had been developed: it was designed to apply fully if the train becomes divided or if a hose becomes displaced, but the railway operators resisted its adoption at first, as it involved considerably more components than the simple system and cost more.

In a serious accident at Armagh, a portion of a train was detached from the locomotive on a steep gradient and ran away, killing 88 people. It was clear that if the vehicles had been fitted with an automatic continuous brake, the accident would almost certainly not have happened, and the public concern at the scale of the accident prompted legislation mandating the use of a continuous automatic brake on all passenger trains.

moving train contains energy, known as kinetic energy, which needs to be removed from the train in order to cause it to stop. The simplest way of doing this is to convert the energy into heat.

The conversion is usually done by applying a contact material to the rotating wheels or to discs attached to the axles. The material creates friction and converts the kinetic energy into heat. The wheels slow down and eventually the train stops. The material used for braking is normally in the form of a block or pad

The vast majority of the world's trains are equipped with braking systems which use compressed air as the force used to push blocks on to wheels or pads on to discs. These systems are known as "air brakes" or "pneumatic brakes". The compressed air is transmitted along the train through a "brake pipe". Changing the level of air pressure in the pipe causes a change in the state of the brake on each vehicle. It can apply the brake, release it or hold it "on" after a partial application. The system is in widespread use throughout the world. An alternative to the air brake, known as the vacuum brake, was introduced around the early 1870s, the same time as the air brake.

Like the air brake, the vacuum brake system is controlled through a brake pipe connecting a brake valve in the driver's cab with braking equipment on every vehicle. The operation of the brake equipment on each vehicle depends on the condition of a vacuum created in the pipe by an ejector or exhauster. The ejector, using steam on a steam locomotive, or an exhauster, using electric power on other types of train, removes atmospheric pressure from the brake pipe to create the vacuum. With a full vacuum, the brake is released. With no vacuum, i.e. normal atmospheric pressure in the brake pipe, the brake is fully applied.

In its simplest form, the automatic vacuum brake consists of a continuous pipe -- the train pipe -- running throughout the length of the train. In normal running a partial vacuum is maintained in the train pipe, and the brakes are released. When air is admitted to the train pipe, the air pressure acts against pistons in cylinders in each vehicle. A vacuum is sustained on the other face of the pistons, so that a net force is applied. A mechanical linkage transmits this force to brake shoes which act by friction on the treads of the wheels.

The fittings to achieve this are therefore:

  • a train pipe: a steel pipe running the length of each vehicle, with flexible vacuum hoses at each end of the vehicles, and coupled between adjacent vehicles; at the end of the train, the final hose is seated on an air-tight plug;
  • an ejector on the locomotive, to create vacuum in the train pipe;
  • controls for the driver to bring the ejector into action, and to admit air to the train pipe; these may be separate controls or a combined brake valve;
  • a brake cylinder on each vehicle containing a piston, connected by rigging to the brake shoes on the vehicle; and
  • a vacuum (pressure) gauge on the locomotive to indicate to the driver the degree of vacuum in the train pipe.

In the diagram, the piston is shown in red; it is connected at the bottom to the brake rigging, and if the piston is pulled up, the brakes are applied.

The brake cylinder is contained in a larger housing -- this gives a reserve of vacuum as the piston operates. The cylinder rocks slightly in operation to maintain alignment with the brake rigging cranks, so it is supported in trunnion bearings, and the vacuum pipe connection to it is flexible. The piston in the brake cylinder has a flexible piston ring that allows air to pass from the upper part of the cylinder to the lower part if necessary.

When the vehicles have been at rest, so that the brake is not charged, the brake pistons will have dropped to their lower position in the absence of a pressure differential (as air will have leaked slowly into the upper part of the cylinder, destroying the vacuum).

When a locomotive is coupled to the vehicles, the driver moves his brake control to the "release" position and air is exhausted from the train pipe, creating a partial vacuum. Air in the upper part of the brake cylinders is also exhausted via the train pipe. In the diagram, the green area represents vacuum.

If the driver now moves his control to the "brake" position, air is admitted to the train pipe. According to the driver's manipulation of the control, some or all of the vacuum will be destroyed in the process. At this point there is a higher air pressure (less vacuum -- indicated in blue in the diagram) under the brake pistons than above it, and the pressure differential forces the piston upwards, applying the brakes. The driver can control the severity of the braking effort by admitting more or less air to the train pipe.