Free Space Optics

Mention optical communication and most people think of fiber optics. But light travels through air for a lot less money. So it is hardly a surprise that clever entrepreneurs and technologists are borrowing many of the devices and techniques developed for fiber-optic systems and applying them to what some call fiber-free optical communication. Although it only recently, and rather suddenly, sprang into public awareness, free-space optics is not a new idea. It has roots that go back over 30 years--to the era before fiber-optic cable became the preferred transport medium for high-speed communication. In those days, the notion that FSO systems could provide high-speed connectivity over short distances seemed futuristic, to say the least. But research done at that time has made possible today's free-space optical systems, which can carry full-duplex (simultaneous bidirectional) data at gigabit-per-second rates over metropolitan distances of a few city blocks to a few kilometers.

FSO first appeared in the 60's, for military applications. At the end of 80's, it appeared as a commercial option but technological restrictions prevented it from success. Low reach transmission, low capacity, severe alignment problems as well as vulnerability to weather interferences were the major drawbacks at that time. The optical communication without wire, however, evolved! Today, FSO systems guarantee 2.5 Gb/s taxes with carrier class availability. Metropolitan, access and LAN networks are reaping the benefits. FSO success can be measured by its market numbers: forecasts predict it will reach a USS 2.5 billion market by 2006.

The use of free space optics is particularly interesting when we perceive that the majority of customers does not possess access to fibers as well as fiber installation is expensive and demands long time. Moreover, right-of-way costs, difficulties in obataining government licenses for new fiber installation etc. are further problems that has turned FSO into the option of choice for short reach applications.

FSO uses lasers, or light pulses, to send packetized data in the terahertz (THz) spectrum range. Air, ot fiber, is the transport medium. This means that urban businesses needing fast data and Internet access have a significantly lower-cost option.

An FSO system for local loop access comprises several laser terminals, each one residing at a network node to create a single, point-to-point link; an optical mesh architecture; or a star topology, which is usually point-to-multipoint. These laser terminals, or nodes, are installed on top of customers' rooftops or inside a window to complete the last-mile connection. Signals are beamed to and from hubs or central nodes throughout a city or urban area. Each node requires a Line-Of-Sight (LOS) view of the hub.