Tunable lasers are still a relatively young technology, but as the number of wavelengths in networks increases so will their importance. Each different wavelength in an optical network will be separated by a multiple of 0.8 nanometers (sometimes referred to as 100GHz spacing. Current commercial products can cover maybe four of these wavelengths at a time. While not the ideal solution, this still cuts your required number of spare lasers down. More advanced solutions hope to be able to cover larger number of wavelengths, and should cut the cost of spares even further.
The devices themselves are still semiconductor-based lasers that operate on similar principles to the basic non-tunable versions. Most designs incorporate some form of grating like those in a distributed feedback laser. These gratings can be altered in order to change the wavelengths they reflect in the laser cavity, usually by running electric current through them, thereby altering their refractive index. The tuning range of such devices can be as high as 40nm, which would cover any of 50 different wavelengths in a 0.8nm wavelength spaced system. Technologies based on vertical cavity surface emitting lasers (VCSELs) incorporate moveable cavity ends that change the length of the cavity and hence the wavelength emitted. Current designs of tunable VCSELs have similar tuning ranges
The devices themselves are still semiconductor-based lasers that operate on similar principles to the basic non-tunable versions. Most designs incorporate some form of grating like those in a distributed feedback laser. These gratings can be altered in order to change the wavelengths they reflect in the laser cavity, usually by running electric current through them, thereby altering their refractive index. The tuning range of such devices can be as high as 40nm, which would cover any of 50 different wavelengths in a 0.8nm wavelength spaced system. Technologies based on vertical cavity surface emitting lasers (VCSELs) incorporate moveable cavity ends that change the length of the cavity and hence the wavelength emitted. Current designs of tunable VCSELs have similar tuning ranges