Plastic electronics

Plastic electronics, is a branch of electronics that deals with conductive polymers, or plastics. It is called 'organic' electronics because the molecules in the polymer are carbon-based, like the molecules of living things. This is as opposed to traditional electronics which relies on inorganic conductors such as copper or silicon. In addition to organic Charge transfer complexes, technically, electrically conductive polymers are mainly derivatives of polyacetylene black (the 'simplest melanin'). Examples include PA (more specificially iodine-doped trans-polyacetylene); polyaniline: PANI, when doped with a protonic acid; and poly(dioctyl-bithiophene): PDOT. Conduction mechanisms involve resonance stabilization and delocalization of pi electrons along entire polymer backbones, as well as mobility gaps, tunneling, and phonon-assisted hopping. Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors. This makes them a desirable alternative in many applications. It also creates the possibility of new applications that would be impossible using copper or silicon. New applications include smart windows and electronic paper. Conductive polymers are expected to play an important role in the emerging science of molecular computing. In general organic conductive polymers have a higher resistance and therefore conduct electricity poorly and inefficiently, as compared to inorganic conductors. Researchers currently are exploring ways of 'doping' organic semiconductors, like melanin, with relatively small amounts of conductive metals to boost conductivity. However, for many applications, inorganic conductors will remain the only viable option.