Poppet Valves

Directional poppet valves consists of a housing bore in which one or more suitably formed seating elements ( moveable ) in the form of balls, cones are situated. When the operating pressure increases the valve becomes more tightly seated in this design. The main advantage of poppet valves are;
- No Leakage as it provides absolute sealing.
- Long useful life, as there are no leakage of oil flows.
- May be used with even the highest pressures, as no hydraulic sticking (pressure dependent deformation ) and leakages occurs in the valve.
The disadvantages of these valves are;
- Large pressure losses due to short strokes
- Pressure collapse during switching phase due to negative overlap ( connection of pump, actuator and tank at the same time ).

A poppet valve is the type of valve system used in most piston engines, used to seal the intake and exhaust ports. The valve is usually a flat disk of metal with a long rod known as the valve stem out one end. The stem is used to push down on the valve and o

pen it, with a spring generally used to close it when the stem is not being pushed on. Desmodromic valves are closed by positive mechanical action instead of by a spring, and are used in some high speed motorcycle and auto racing engines, eliminating 'valve float' at high RPM.

For certain applications the valve stem and disk are made of different steel alloys, or the valve stems may be hollow and filled with sodium to improve heat transport and transfer.

The engine normally operates the valves by pushing on the stems with cams and cam followers. The shape and position of the cam determines the valve lift and when and how quickly (or slowly) the valve is opened. The cams are normally placed on a fixed camshaft which is then geared to the crankshaft, running at half crankshaft speed in a four-stroke engine. On high performance engines e.g. used in Ferrari cars, the camshaft is moveable and the cams have a varying height, so by axially moving the camshaft in relation with the engine RPM, also the valve lift varies. See variable valve timing.

In very early engine designs the valves were 'upside down' in the block, parallel to the cylinders - the so called L-head engine because of the shape of the cylinder and combustion space, also called 'flathead engine' as the top of the cylinder head is flat. Although this design makes for simplified and cheap construction, it has two major drawbacks; the tortuous path followed by the intake charge effectively prevents speeds greater than 2,000-2,500 RPM, and the travels of the exhaust through the block lead to excessive overheating under sustained heavy load. This design therefore evolved into 'Intake Over Exhaust', IOE or F-head, where the intake valve was in the block and the exhaust valve was in the head; later both valves moved to the head.

In most such designs the camshaft remained relatively near the crankshaft, and the valves were operated through pushrods and rocker arms. This led to significant energy losses in the engine, but was simpler, especially in a V engine where one camshaft can actuate the valves for both cylinder banks; for this reason, pushrod engine designs persisted longer in these configurations than others.

More modern designs have the camshaft on top of the cylinder head, pushing directly on the valve stem (again through cam followers), a system known as overhead camshaft; if there is just one camshaft, this is a single overhead cam or SOHC engine. Often there are two camshafts, one for the intake and one for exhaust valves, creating the dual overhead cam, or DOHC. The camshaft is driven by the crankshaft - through gears, a chain or in modern engines with a rubber belt.

In the early days of engine building, the poppet valve was a major problem. Metallurgy was not what it is today, the rapid opening and closing of the valves against the cylinder heads led to rapid wear. They would need to be re-ground every two years or so, in an expensive and time consuming process known as a valve job. Adding tetra-ethyl lead to the petrol reduced this problem to some degree as the lead would coat the valve seats, hardening the metal. Valve seats made of improved alloys such as stellite have generally made this problem disappear completely and making leaded fuel unnecessary.

The poppet valve was also used in a limited fashion in steam engines, particularly steam locomotives. Most steam locomotives used slide valves or piston valves, but these designs, although mechanically simpler and very rugged, were significantly less efficient than the poppet valve. A number of designs of locomotive poppet valve system were tried, the most popular being the Italian Caprotti valve gear, the British Caprotti valve gear (an improvement of the Italian one), the German Lentz rotary-cam valve gear, and two American versions by Franklin, their oscillating-cam valve gear and rotary-cam valve gear. They were used with some success, but they were less ruggedly reliable than traditional valve gear and did not see widespread adoption.