Hovercraft

Hovercraft

A hovercraft, or air-cushion vehicle (ACV), is a craft, designed to travel over any smooth surface supported by a cushion of slow moving, high-pressure air, ejected downwards against the surface below, and contained within a "skirt." Hovercraft are used throughout the world as a method of specialized transport where ever there is the need to travel over multiple types of surfaces. Because they are supported by a cushion of air, hovercraft are unique among all forms of ground transportation in their ability to travel equally well over land, ice, and water. Small hovercraft are often used for sport or passenger service, while giant hovercraft have been built for civilian and military applications to transport cars, tanks, and large equipment into difficult or hostile environments and terrain.

Today often considered as the brainchild of (Sir) Christopher Cockerell, hovercraft are the result of a chain of developments from John Thornycroft's initial discovery in the late 1800's that air trapped beneath a ship's hull would reduce the friction imposed on the ship as it moved through water. In the 1950s Sir Christopher Cockerell, a British engineer, discovered that by creating a wall of high pressure air forced beneath a hull, to create an air cushion, the hull (of the now Hovercraft) could be levitated further off from its original surface (land or water) than by using a simple pump with the same power (see Momentum curtain).

A Hovercraft is a vehicle that flies like a plane but can float like a boat, can drive like a car but will traverse ditches and gullies as it is a flat terrain. A Hovercraft also sometimes called an air cushion vehicle because it can hover over or move across land or water surfaces while being held off from the surfaces by a cushion of air. A Hovercraft can travel over all types of surfaces including grass, mud, muskeg, sand, quicksand, water and ice .Hovercraft prefer gentle terrain although they are capable of climbing slopes up to 20%, depending upon surface characteristics. Modern Hovercrafts are used for many applications where people and equipment need to travel at speed over water but be able load and unload on land. For example they are used as passenger or freight carriers, as recreational machines and even use as warships. Hovercrafts are very exciting to fly and feeling of effortlessly traveling from land to water and back again is unique.

Hovercraft as we know them today started life as an experimental design to reduce the drag that was placed on boats and ships as they ploughed through water. The first recorded design for an air cushion vehicle was put forwarded by Swedish designer and philosopher Emmanuel Swedenborg in 1716. The craft resembled an upturned dinghy with a cockpit in the centre.

Apertures on either side of this allowed the operator to raise or lower a pair of oar-like air scoops, which on downward strokes would force compressed air beneath the hull, thus raising it above the surface. The project was short-lived because it was never built, for soon Swedenborg soon realized that to operate such a machine required a source of energy far greater than that could be supplied by single human equipment. Not until the early20th century was a Hovercraft practically possible, because only the internal combustion engine had the very high power to weight ratio suitable for Hover flight.


In the mid 1950s Christopher Cockrell, a brilliant British radio engineer and French engineer John Bertin, worked along with similar line of research, although they used different approaches to the problem of maintaining the air cushion. Cockrell while running a small boatyard in Norfolk Boards in the early 1950s began by exploring the use of air lubrication to reduce the hydrodynamic drag, first by employing a punt, then a 20 knot ex-naval launch as a test craft.

PRINCIPLE OF WORKING

The principle of working of a Hovercraft is to lift the craft by a cushion of air to propel it using propellers. The idea of supporting the vehicle on a cushion of air developed from the idea to increase the speed of boat by feeding air beneath them. The air beneath the hull would lubricate the surface and reduce the water drag on boat and so increasing its speed through water.

The air sucked in through a port by large lifting fans which are fitted to the primary structure of the craft. They are powered by gas turbine or diesel engine. The air is pushed to the under side of the craft. On the way apportion of air from the lift fan is used to inflate the skirt and rest is ducted down under the craft to fill area enclosed by the skirt.
At the point when the pressure equals the weight of the craft, the craft lifts up and air is escaped around the edges of the skirt. So a constant feed of air is needed to lift the craft and compensate for the losses.

Thus craft is lifted up. After the propulsion is provided by the propellers mounted on the Hovercraft. The airs from the propellers are passed over rudders, which are used to steer the craft similar to an aircraft. Hovercraft is thus propelled and controlled and its powerful engine makes it to fly.